570 mV photovoltage , stabilized n - Si / CoO x heterojunction photoanodes fabricated using atomic layer deposition
نویسندگان
چکیده
Heterojunction photoanodes, consisting of n-type crystalline Si(100) substrates coated with a thinB50 nm film of cobalt oxide fabricated using atomic-layer deposition (ALD), exhibited photocurrent-onset potentials of 205 20 mV relative to the formal potential for the oxygen-evolution reaction (OER), ideal regenerative solar-to-O2(g) conversion efficiencies of 1.42 0.20%, and operated continuously for over 100 days (B2500 h) in 1.0 M KOH(aq) under simulated solar illumination. The ALD CoOx thin film: (i) formed a heterojunction with the n-Si(100) that provided a photovoltage of 575 mV under 1 Sun of simulated solar illumination; (ii) stabilized Si photoanodes that are otherwise unstable when operated in aqueous alkaline electrolytes; and, (iii) catalyzed the oxidation of water, thereby reducing the kinetic overpotential required for the reaction and increasing the overall efficiency relative to electrodes that do not have an inherently electrocatalytic coating. The process provides a simple, effective method for enabling the use of planar n-Si(100) substrates as efficient and durable photoanodes in fully integrated, photovoltaic-biased solar fuels generators.
منابع مشابه
The influence of structure and processing on the behavior of TiO2 protective layers for stabilization of n-Si/TiO2/Ni photoanodes for water oxidation.
Light absorbers with moderate band gaps (1-2 eV) are required for high-efficiency solar fuels devices, but most semiconducting photoanodes undergo photocorrosion or passivation in aqueous solution. Amorphous TiO2 deposited by atomic-layer deposition (ALD) onto various n-type semiconductors (Si, GaAs, GaP, and CdTe) and coated with thin films or islands of Ni produces efficient, stable photoanod...
متن کاملInterface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide
Introduction of an ultrathin (2 nm) film of cobalt oxide (CoOx) onto n-Si photoanodes prior to sputter-deposition of a thick multifunctional NiOx coating yields stable photoelectrodes with photocurrent-onset potentials of B 240 mV relative to the equilibrium potential for O2(g) evolution and current densities of B28 mA cm 2 at the equilibrium potential for water oxidation when in contact with 1...
متن کاملEfficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces.
Plasma-enhanced atomic layer deposition of cobalt oxide onto nanotextured p(+)n-Si devices enables efficient photoelectrochemical water oxidation and effective protection of Si from corrosion at high pH (pH 13.6). A photocurrent density of 17 mA/cm(2) at 1.23 V vs RHE, saturation current density of 30 mA/cm(2), and photovoltage greater than 600 mV were achieved under simulated solar illuminatio...
متن کاملFabrication of dye sensitized solar cells with a double layer photoanode
Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...
متن کاملThe heterojunction effects of TiO2 nanotubes fabricated by atomic layer deposition on photocarrier transportation direction
The heterojunction effects of TiO2 nanotubes on photoconductive characteristics were investigated. For ITO/TiO2/Si diodes, the photocurrent is controlled either by the TiO2/Si heterojunction (p-n junction) or the ITO-TiO2 heterojunction (Schottky contact). In the short circuit (approximately 0 V) condition, the TiO2-Si heterojunction dominates the photocarrier transportation direction due to it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016